Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The Populus superoxide dismutase gene family and its responses to drought stress in transgenic poplar overexpressing a pine cytosolic glutamine synthetase (GS1a).

Identifieur interne : 002469 ( Main/Exploration ); précédent : 002468; suivant : 002470

The Populus superoxide dismutase gene family and its responses to drought stress in transgenic poplar overexpressing a pine cytosolic glutamine synthetase (GS1a).

Auteurs : Juan Jesús Molina-Rueda [États-Unis] ; Chung Jui Tsai ; Edward G. Kirby

Source :

RBID : pubmed:23451045

Descripteurs français

English descriptors

Abstract

BACKGROUND

Glutamine synthetase (GS) plays a central role in plant nitrogen assimilation, a process intimately linked to soil water availability. We previously showed that hybrid poplar (Populus tremula X alba, INRA 717-1B4) expressing ectopically a pine cytosolic glutamine synthetase gene (GS1a) display enhanced tolerance to drought. Preliminary transcriptome profiling revealed that during drought, members of the superoxide dismutase (SOD) family were reciprocally regulated in GS poplar when compared with the wild-type control, in all tissues examined. SOD was the only gene family found to exhibit such patterns.

RESULTS

In silico analysis of the Populus genome identified 12 SOD genes and two genes encoding copper chaperones for SOD (CCSs). The poplar SODs form three phylogenetic clusters in accordance with their distinct metal co-factor requirements and gene structure. Nearly all poplar SODs and CCSs are present in duplicate derived from whole genome duplication, in sharp contrast to their predominantly single-copy Arabidopsis orthologs. Drought stress triggered plant-wide down-regulation of the plastidic copper SODs (CSDs), with concomitant up-regulation of plastidic iron SODs (FSDs) in GS poplar relative to the wild type; this was confirmed at the activity level. We also found evidence for coordinated down-regulation of other copper proteins, including plastidic CCSs and polyphenol oxidases, in GS poplar under drought conditions.

CONCLUSIONS

Both gene duplication and expression divergence have contributed to the expansion and transcriptional diversity of the Populus SOD/CCS families. Coordinated down-regulation of major copper proteins in drought-tolerant GS poplars supports the copper cofactor economy model where copper supply is preferentially allocated for plastocyanins to sustain photosynthesis during drought. Our results also extend previous findings on the compensatory regulation between chloroplastic CSDs and FSDs, and suggest that this copper-mediated mechanism represents a common response to oxidative stress and other genetic manipulations, as in GS poplars, that affect photosynthesis.


DOI: 10.1371/journal.pone.0056421
PubMed: 23451045
PubMed Central: PMC3579828


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The Populus superoxide dismutase gene family and its responses to drought stress in transgenic poplar overexpressing a pine cytosolic glutamine synthetase (GS1a).</title>
<author>
<name sortKey="Molina Rueda, Juan Jesus" sort="Molina Rueda, Juan Jesus" uniqKey="Molina Rueda J" first="Juan Jesús" last="Molina-Rueda">Juan Jesús Molina-Rueda</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biological Sciences, Rutgers University, Newark, New Jersey, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biological Sciences, Rutgers University, Newark, New Jersey</wicri:regionArea>
<placeName>
<region type="state">New Jersey</region>
<settlement type="city">New Brunswick (New Jersey)</settlement>
</placeName>
<orgName type="university">Université Rutgers</orgName>
</affiliation>
</author>
<author>
<name sortKey="Tsai, Chung Jui" sort="Tsai, Chung Jui" uniqKey="Tsai C" first="Chung Jui" last="Tsai">Chung Jui Tsai</name>
</author>
<author>
<name sortKey="Kirby, Edward G" sort="Kirby, Edward G" uniqKey="Kirby E" first="Edward G" last="Kirby">Edward G. Kirby</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23451045</idno>
<idno type="pmid">23451045</idno>
<idno type="doi">10.1371/journal.pone.0056421</idno>
<idno type="pmc">PMC3579828</idno>
<idno type="wicri:Area/Main/Corpus">002680</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002680</idno>
<idno type="wicri:Area/Main/Curation">002680</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002680</idno>
<idno type="wicri:Area/Main/Exploration">002680</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The Populus superoxide dismutase gene family and its responses to drought stress in transgenic poplar overexpressing a pine cytosolic glutamine synthetase (GS1a).</title>
<author>
<name sortKey="Molina Rueda, Juan Jesus" sort="Molina Rueda, Juan Jesus" uniqKey="Molina Rueda J" first="Juan Jesús" last="Molina-Rueda">Juan Jesús Molina-Rueda</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biological Sciences, Rutgers University, Newark, New Jersey, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biological Sciences, Rutgers University, Newark, New Jersey</wicri:regionArea>
<placeName>
<region type="state">New Jersey</region>
<settlement type="city">New Brunswick (New Jersey)</settlement>
</placeName>
<orgName type="university">Université Rutgers</orgName>
</affiliation>
</author>
<author>
<name sortKey="Tsai, Chung Jui" sort="Tsai, Chung Jui" uniqKey="Tsai C" first="Chung Jui" last="Tsai">Chung Jui Tsai</name>
</author>
<author>
<name sortKey="Kirby, Edward G" sort="Kirby, Edward G" uniqKey="Kirby E" first="Edward G" last="Kirby">Edward G. Kirby</name>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Droughts (MeSH)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Glutamate-Ammonia Ligase (genetics)</term>
<term>Glutamate-Ammonia Ligase (metabolism)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (metabolism)</term>
<term>Populus (enzymology)</term>
<term>Superoxide Dismutase (genetics)</term>
<term>Superoxide Dismutase (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Glutamate-ammonia ligase (génétique)</term>
<term>Glutamate-ammonia ligase (métabolisme)</term>
<term>Populus (enzymologie)</term>
<term>Protéines végétales (génétique)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Superoxide dismutase (génétique)</term>
<term>Superoxide dismutase (métabolisme)</term>
<term>Sécheresses (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Glutamate-Ammonia Ligase</term>
<term>Plant Proteins</term>
<term>Superoxide Dismutase</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Glutamate-Ammonia Ligase</term>
<term>Plant Proteins</term>
<term>Superoxide Dismutase</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Glutamate-ammonia ligase</term>
<term>Protéines végétales</term>
<term>Superoxide dismutase</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Glutamate-ammonia ligase</term>
<term>Protéines végétales</term>
<term>Superoxide dismutase</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Droughts</term>
<term>Gene Expression Regulation, Plant</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Régulation de l'expression des gènes végétaux</term>
<term>Sécheresses</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Glutamine synthetase (GS) plays a central role in plant nitrogen assimilation, a process intimately linked to soil water availability. We previously showed that hybrid poplar (Populus tremula X alba, INRA 717-1B4) expressing ectopically a pine cytosolic glutamine synthetase gene (GS1a) display enhanced tolerance to drought. Preliminary transcriptome profiling revealed that during drought, members of the superoxide dismutase (SOD) family were reciprocally regulated in GS poplar when compared with the wild-type control, in all tissues examined. SOD was the only gene family found to exhibit such patterns.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>In silico analysis of the Populus genome identified 12 SOD genes and two genes encoding copper chaperones for SOD (CCSs). The poplar SODs form three phylogenetic clusters in accordance with their distinct metal co-factor requirements and gene structure. Nearly all poplar SODs and CCSs are present in duplicate derived from whole genome duplication, in sharp contrast to their predominantly single-copy Arabidopsis orthologs. Drought stress triggered plant-wide down-regulation of the plastidic copper SODs (CSDs), with concomitant up-regulation of plastidic iron SODs (FSDs) in GS poplar relative to the wild type; this was confirmed at the activity level. We also found evidence for coordinated down-regulation of other copper proteins, including plastidic CCSs and polyphenol oxidases, in GS poplar under drought conditions.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>Both gene duplication and expression divergence have contributed to the expansion and transcriptional diversity of the Populus SOD/CCS families. Coordinated down-regulation of major copper proteins in drought-tolerant GS poplars supports the copper cofactor economy model where copper supply is preferentially allocated for plastocyanins to sustain photosynthesis during drought. Our results also extend previous findings on the compensatory regulation between chloroplastic CSDs and FSDs, and suggest that this copper-mediated mechanism represents a common response to oxidative stress and other genetic manipulations, as in GS poplars, that affect photosynthesis.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23451045</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>09</Month>
<Day>03</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>8</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2013</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS One</ISOAbbreviation>
</Journal>
<ArticleTitle>The Populus superoxide dismutase gene family and its responses to drought stress in transgenic poplar overexpressing a pine cytosolic glutamine synthetase (GS1a).</ArticleTitle>
<Pagination>
<MedlinePgn>e56421</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0056421</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Glutamine synthetase (GS) plays a central role in plant nitrogen assimilation, a process intimately linked to soil water availability. We previously showed that hybrid poplar (Populus tremula X alba, INRA 717-1B4) expressing ectopically a pine cytosolic glutamine synthetase gene (GS1a) display enhanced tolerance to drought. Preliminary transcriptome profiling revealed that during drought, members of the superoxide dismutase (SOD) family were reciprocally regulated in GS poplar when compared with the wild-type control, in all tissues examined. SOD was the only gene family found to exhibit such patterns.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">In silico analysis of the Populus genome identified 12 SOD genes and two genes encoding copper chaperones for SOD (CCSs). The poplar SODs form three phylogenetic clusters in accordance with their distinct metal co-factor requirements and gene structure. Nearly all poplar SODs and CCSs are present in duplicate derived from whole genome duplication, in sharp contrast to their predominantly single-copy Arabidopsis orthologs. Drought stress triggered plant-wide down-regulation of the plastidic copper SODs (CSDs), with concomitant up-regulation of plastidic iron SODs (FSDs) in GS poplar relative to the wild type; this was confirmed at the activity level. We also found evidence for coordinated down-regulation of other copper proteins, including plastidic CCSs and polyphenol oxidases, in GS poplar under drought conditions.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">Both gene duplication and expression divergence have contributed to the expansion and transcriptional diversity of the Populus SOD/CCS families. Coordinated down-regulation of major copper proteins in drought-tolerant GS poplars supports the copper cofactor economy model where copper supply is preferentially allocated for plastocyanins to sustain photosynthesis during drought. Our results also extend previous findings on the compensatory regulation between chloroplastic CSDs and FSDs, and suggest that this copper-mediated mechanism represents a common response to oxidative stress and other genetic manipulations, as in GS poplars, that affect photosynthesis.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Molina-Rueda</LastName>
<ForeName>Juan Jesús</ForeName>
<Initials>JJ</Initials>
<AffiliationInfo>
<Affiliation>Department of Biological Sciences, Rutgers University, Newark, New Jersey, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tsai</LastName>
<ForeName>Chung Jui</ForeName>
<Initials>CJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kirby</LastName>
<ForeName>Edward G</ForeName>
<Initials>EG</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>02</Month>
<Day>22</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.15.1.1</RegistryNumber>
<NameOfSubstance UI="D013482">Superoxide Dismutase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 6.3.1.2</RegistryNumber>
<NameOfSubstance UI="D005974">Glutamate-Ammonia Ligase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D055864" MajorTopicYN="Y">Droughts</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005974" MajorTopicYN="N">Glutamate-Ammonia Ligase</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013482" MajorTopicYN="N">Superoxide Dismutase</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2012</Year>
<Month>10</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>01</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>3</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>3</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>9</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23451045</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0056421</ArticleId>
<ArticleId IdType="pii">PONE-D-12-31122</ArticleId>
<ArticleId IdType="pmc">PMC3579828</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Science. 1997 Oct 31;278(5339):853-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9346482</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Res Notes. 2011 Mar 08;4:52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21385391</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Sci. 1999 May;8(5):978-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10338008</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 1984 Jul 31;122(2):635-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6466333</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2006 May;223(6):1145-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16292566</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 Aug;18(8):2051-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16861386</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2004 Jul;24(7):729-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15123444</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2005 Jul;167(1):31-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15948827</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2002 Jun 18;3(7):RESEARCH0034</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12184808</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1998 Oct;118(2):637-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9765550</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2003 May 2;328(3):581-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12706718</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1991 Aug;3(8):783-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1820818</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 Nov;20(11):3148-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18996978</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Apr;17(4):1233-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15772282</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1996 Nov 1;241(3):779-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8944766</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2007;2(4):953-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17446895</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2010 Jan;5(1):51-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20057381</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2011 Oct;28(10):2731-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21546353</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2011;8(10):785-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21959131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2011 May 5;473(7345):97-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21478875</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 1997 Apr;38(4):463-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9177032</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 1999;112:531-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10027275</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1988 Mar 14;229(2):377-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3345848</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1990 Dec;87(24):9903-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2263641</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2005 Apr;162(4):465-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15900889</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2004 Nov 22;20(17):3246-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15180930</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2008 Jul;67(4):403-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18392778</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2005 Apr 25;579(11):2307-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15848163</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2010 Nov;232(6):1471-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20859639</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1999 Jun;120(2):513-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10364402</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2008 Mar;3(3):156-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19513210</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2009 Nov;2(6):1336-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19969519</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2007 Sep;2(5):408-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19704616</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Dec;151(4):2120-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19854858</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2010 Oct;140(2):153-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20553417</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2012 Sep;10(7):883-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22672155</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2009 Sep;71(1-2):51-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19533381</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Jun 1;282(22):16369-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17405879</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Soc Trans. 2002 Aug;30(4):732-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12196180</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 1975;44:147-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1094908</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2006 Jan;24(12):734-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16220344</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2011 Jan 15;27(2):225-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21098430</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1997 Sep;115(1):129-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9306696</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2010 Feb;231(3):705-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20012085</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1969 Nov 25;244(22):6049-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5389100</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1994 May 6;238(3):366-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8176730</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2002 Nov;18(11):1477-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12424119</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Prep Biochem Biotechnol. 2004 Aug;34(3):209-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15461137</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1999 Nov;210(1):19-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10592028</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Apr;149(4):1848-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19176719</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2002 May;53(372):1331-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11997379</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2011 Aug;62(13):4423-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21642235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1976 May 7;72:248-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">942051</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1988 Dec;88(4):1215-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16666446</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Nov;157(3):1300-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21941002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol Biochem. 2010 Dec;48(12):909-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20870416</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2004 Aug 18;4:14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15317655</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2007 Jul;35(Web Server issue):W71-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17485472</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2009 Apr;37(6):e45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19237396</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2007 Nov 1;23(21):2947-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17846036</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1997 Sep 1;25(17):3389-402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9254694</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1989 Jan;8(1):31-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2540959</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Rep. 2010 Feb;37(2):1119-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19830589</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>New Jersey</li>
</region>
<settlement>
<li>New Brunswick (New Jersey)</li>
</settlement>
<orgName>
<li>Université Rutgers</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Kirby, Edward G" sort="Kirby, Edward G" uniqKey="Kirby E" first="Edward G" last="Kirby">Edward G. Kirby</name>
<name sortKey="Tsai, Chung Jui" sort="Tsai, Chung Jui" uniqKey="Tsai C" first="Chung Jui" last="Tsai">Chung Jui Tsai</name>
</noCountry>
<country name="États-Unis">
<region name="New Jersey">
<name sortKey="Molina Rueda, Juan Jesus" sort="Molina Rueda, Juan Jesus" uniqKey="Molina Rueda J" first="Juan Jesús" last="Molina-Rueda">Juan Jesús Molina-Rueda</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002469 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002469 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:23451045
   |texte=   The Populus superoxide dismutase gene family and its responses to drought stress in transgenic poplar overexpressing a pine cytosolic glutamine synthetase (GS1a).
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:23451045" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020